
TERAVISION: A DISTRIBUTED, SCALABLE, HIGH-RESOLUTION GRAPHICS STREAMING SYSTEM

BY

RAJVIKRAM SINGH

B.E. Electronics Engineering, University of Mumbai, India, 1998

THESIS

Submitted as partial fulfillment of the requirements 

for the degree of Master of Science in Computer Science

 in the Graduate College of the 

University of Illinois at Chicago, 2003

Chicago, Illinois

ACKNOWLEDGMENTS

I would like to thank my committee members; Jason Leigh, Andrew Johnson and Luc Renambot for their valuable guidance and patience in leading this thesis to completion. I am grateful to Jason for his foresight in laying the foundation for TeraVision and giving me an opportunity to work on it, I hope that this thesis comes close to what he had envisioned.
I thank every member of the Electronic Visualization Laboratory (EVL), University of Illinois at Chicago for their constant support and valuable inputs throughout the duration of my thesis. I would really like to thank our support group Alan Verlo, Lance Long and Patrick Hallihan for their relentless help with system and networking problems. I’d like to thank my team members; Naveen Krishnaprasad for his valuable help with design issues, Shalini Venkataraman for patiently answering my 3D graphics-related queries and Brenda Lopez for her help with designing the GUI, logo, videos and taking care of all online web-pages. I also want to thank Javier Girado and Yong-joo Cho for their very helpful guidance in overcoming Windows related problems. I truly appreciate the warm support of my closest companions at EVL: Laura, Eleni, Tina, Javid, Janet, Vaidya, Julieta, Nicholas and Marientina.
We’ve also had a lot of support from our collaborators at GRNET (Greek Research and Technology Network), University of Amsterdam, ANL (Argonne National Labs), Northwestern University and NCSA (National Center for Supercomputing applications). Fotis Karayannis, Cees de Laat, Paul Wielinga, Hans Blom, Linda Winkler and  are just a few of the people that I would like to thank.
ACKNOWLEDGMENTS

And last but definitely not the least; I’d like to thank my parents; Dr Khushdev Singh Mudher and Hardip Kaur, for their unconditional encouragement and support; without which any achievement would probably not hold any value. I’d like to dedicate this thesis to them. 
 

RS

TABLE OF CONTENTS
CHAPTER









PAGE
1.
TERAVISION: MOTIVATION AND OVERVIEW …………………….
1

1.1
Motivation ………………………………………………………..
1
1.1.1
Collaboration / Presentation …………………………………...
1
1.1.2
Scientific Visualizations ………………………………………...
2
1.2
Visualizations and displays …………………………………….
5
1.2.1
Output of a single computer ……………………………………
5
1.2.2
Tiled Displays ……………………………………………………
6
1.2.3
Stereoscopic Visualizations ……………………………………
7
1.2.4
Other standard and non-standard displays …………………..
8
1.3
Problems associated with streaming visualizations …………
8
1.4
Need to distribute network streaming load …………………...
10
1.4.1
Fast Networks
……………………………………………………
10
1.4.2
Fast Computers ………………………………………………….
11
1.5
TeraVision: Overview and applications ……………………….
12

2.
TERAVISION: RELATED WORK …………………………………….

14
2.1
Software based solutions ………………………………………
14
2.1.1
Remote desktop access ………………………………………..
14
2.1.2
Scalable / distributed graphics systems ………………………
15
2.1.2.1
AURA …………………………………………………………….
15
2.1.2.2
Chromium/WireGL ………………………………………………
16
2.1.3
Media streaming software ……………………………………...
17
2.2
Hardware based solutions ……………………………………...
17

3.
TERAVISION: CONCEPTS, SYSTEM DESIGN AND IMPLEMENTATION

…………………………………………………………………….
18
3.1
Concepts ………………………………………………………..

20
3.1.1
TeraVision Server ……………………………………………...

20
3.1.2
TeraVision Client ……………………………………………….

20

3.1.3
TeraVision Master ……………………………………………...
21


3.1.4
TeraVision Slave ………………………………………………..
22

3.1.5
Video Source ……………………………………………………
23


3.1.6
Server or client Montages ……………………………………..
23

3.1.7
TeraVision processes
…………………………………………..
23

3.2
Possible configurations …………………………………………
23
3.3
System design …………………………………………………..
26
3.4
System modules and their design considerations …………..
29
3.4.1
User Interface Module ………………………………………….
29
3.4.2
Control Channel …………………………………………………
35
3.4.3
Sync Channel
…………………………………………………...
36
3.4.4
Video Source Module
…………………………………………..
40
3.4.5
Compression Module …………………………………………..
42
3.4.6
Network Protocol Modules …………………………………….
43
3.4.6.1
TCP Module …...………………………………………………..
44

3.4.6.2
UDP Module …………………………………………………….
45
TABLE OF CONTENTS (contd.)

CHAPTER









PAGE
3.4.6.3
Multicast Module ………………………………………………..
47

4.
SPECIFIC CAPABILITIES ……………………………………………..
51

4.1
M x N to X x Y scaling
 ………………………………………….
51
4.2
Video data over UDP …………………………………………..
54
4.3
Remote process execution and control ………………………
56
4.4
Frame Decimation policy ………………………………………
57
4.4.1
Server side decimation …………………………………………
57
4.4.2
Client side decimation
 ………………………………………….
57

5.
TESTS AND OBSERVATIONS ………………………………….……
58
5.1
Test machines’ specifications
 ………………………………...
58

5.1.1
Linux machines …………………………………………………
58
5.1.2
Windows machines …………………………………………….

58
5.2
Network specifications …………………………………………
59
5.2.1
LAN ………………………………………………………………
59
5.2.2
WAN ……………………………………………………………..

59
5.3
Tests ……………………………………………………………..
59


5.3.1
Performance over TCP and UDP ……………………………..
59

5.3.2
Affect of Synchronization and Scalability …………………….
61

5.3.3
Affect of different frame sizes …………………………………
62


5.3.4
Affect of UDP datagram sizes ………………………………...
64

5.4
System demonstrations ………………………………………..
65

6.
CONCLUSIONS AND FUTURE WORK ……………………………..

66
6.1
Contributions …………………………………………………….
66
6.2
Future work ……………………………………………………...
67
6.2.1
Multicasting tiled displays ………………………………………
67
6.2.2
Optical multicast …………………………………………………
67
6.2.3
Incorporate RBUDP …………………………………………….
68
6.2.4
Integration with the Access Grid ………………………………
68
6.2.5
Real-time guarantees from the OS ……………………………
69
6.2.6
Collapsing large displays to small …………………………….
69

6.2.7
Compression over unreliable protocols ………………………
70
6.2.8
Secure channel for control plane ……………………………...
70
6.2.9
Port-mapping and restricting port range ……………………...
70
6.3
Concluding remarks …………………………………………….
71

CITED LITERATURE ……………………………………………………
72
VITA ……………………………………………………………………….
74
 LIST OF TABLES
TABLE                                                                                                                       PAGE
I.
COMPARISION CHART OF EXISTING SYSTEMS AND TERAVISION 
18
II.
SYSTEM PERFORMANCE OVER TCP…………………………………
60
III.
SYSTEM PERFORMANCE OVER UDP…………………………………
60
IV.
EFFECT OF SYNCHRONIZATION AND SCALABILITY ON CLIENTS 
61
V.
EFFECT OF SYNCHRONIZATION AND SCALABILITY ON SERVERS 
62
VI.
EFFECT OF FRAME SIZES OVER TCP …………………………………
63
VII.
EFFECT OF FRAME SIZES OVER UDP …………………………………
63
VIII.
EFFECT OF UDP DATAGRAM SIZES ON WINDOWS …………………
64

LIST OF FIGURES

FIGURE                                                                                                                     
PAGE
1. 
The Continuum – An Amplified Collaboration Environment 

at EVL …………………………………………………………………….
2

2. 
Scientific Visualization Pipeline ………………………………………..
4

3. 
Graphics processing pipeline constructed using n machines ………
5

4. 
Display from a single computer generating visualization …………...
6

5. EVL’S 15 tile tiled-display running Vol-A-Tile; an interactive, 

realtime volume rendering software ……………………………………
7

6. Users seen interacting with a passive stereo system called 

AGAVE at EVL’s AccessGrid room ……………………………………
8

7. 
Basic TeraVision setup …………………………………………………
13

8. 
Master-Slave Interaction ………………………………………………..
22

9. 
TeraVision setup for streaming stereoscopic video …………………
24


10. 
Example of streaming tiled-displays using multiple VBoxes 

at a site ……………………………………………………………………
25

11. 
Block diagram representation of TeraVision server design ………...
27


12. 
Block diagram representation of TeraVision client design ………….
28

13. 
Interaction between the UI modules and the TeraVision process …
32

14. 
TeraVision GUI main screen …………………………………………..
.
34

15. 
Configuring individual modules through the system configuration 

screen …………………………………………………………………….
35

16. 
Steps for handshake over TCP ………………………………………..
39

17. 
Example of external sources with TeraVision servers ………………
41

18. 
TCP module configuration screen ……………………………………..
44

19. 
UDP module configuration screen …………………………………….
47

20. 
Single video stream multicast from one server to one client ……….
48

LIST OF FIGURES (contd.)

FIGURE                                                                                                                     
PAGE
21. 
Multiple video streams multicast from many servers to 

many clients ………………………………………………………………
49

22.
Multicast module configuration screen ………………………………..
50

23. 
Scaling source video to client display …………………………………
52

24.
Header and payload fields of a TeraVision UDP packet …………..
55

LIST OF ABBREVIATIONS
ACE


Advanced Collaborative Environments
AGAVE

Access Grid Augmented Virtual Environment
CPU


Central Processing Unit

PDA


Personal Digital Assistant
RFC


Request For Comments
TCP


Transmission Control Protocol

UDP


Unreliable Datagram Protocol
LAN


Local Area Networks

WAN


Wide Area Networks

NFS


Network File System

LFN


Long Fat Network

Gbps


Gigabits Per Second

VGA


Video Graphics Adapter

DVI


Digital Video Interface

USB


Universal Serial Bus

RBUDP

Reliable Blast UDP

MPEG


Motion Picture Experts Group

IPC


Inter-Process Communication

MMX


Multimedia Extensions

IA-32


Intel Architecture, 32-bits

IA-64


Intel Architecture, 64-bits

GUI


Graphical User Interface

FLTK


Fast Light Tool Kit

BDP


Bandwidth Delay Product

MTU


Maximum Transmission Unit

OS


Operating System

SUMMARY
One of the common problems faced in collaborative environments and scientific visualization applications, is termed the 'Display docking' or the 'Display Pushing' problem. In simple words, it is the need for distributing visualizations or presentations generated on one or more computers, to remote sites for viewing and/or image post-processing. A typical image source in such a case could be computers ranging from laptops showing presentations, to compute clusters number crunching terabytes of data and rendering high resolution visualizations on tiled displays. 
In this thesis report we present a scalable platform independent solution which is capable of transmitting multiple high resolution video streams from such video sources to one or more destinations. The unique capability of this concept is that it is a flexible hardware and software based solution, where no special software/hardware has to be installed on the source or destination machines to enable them to transmit their video. The load of streaming these high-resolution video streams is also off-loaded to dedicated systems, leaving the source machines, generating the graphics, free for pure computation. The multiple video streams handled by the system can either be independent of each other or they might be component streams of a more complex video system, such as a tiled display or stereoscopic display. We shall also present results with testing on high speed dedicated long haul networks, and local area gigabit LANs with different Layer 4 protocols. 

1. tERAvISION: Motivation and overview
We must not wait for things to come, believing that they are decided by irrescindable destiny. If we want it, we must do something about it now.





- Erwin Schrödinger (Nobel Prize laureate)
1.1 Motivation 
1.1.1 Collaboration / Presentation


Collaborative environments are physical meeting places that allow remote users to interact and work on a common set of tasks. Such environments have an inherent and basic requirement that the users are able to share and present their ideas to remote parties in such a way that it feels like all the participants are in the same room. One example is a system called the Continuum [5] at the Electronic Visualization Laboratory, at the University of Illinois at Chicago. Continuum, as shown in Figure 1 is an example of an Advanced Collaborative Environment (ACE) which are based on the concept of the “War Room” or “Project Room” and have been shown to increase the productivity of collocated working teams by a factor of two [5]. The Continuum integrates a broad range of technologies that include: multi-party video conferencing (via the AccessGrid [6]), electronic touch screens (for intuitive shared white-boarding), passive stereoscopic displays such as the AGAVE [3], for displaying data sets in true 3D, high resolution tiled displays for displaying large visualizations or mosaics of visualizations, and PDAs and laptops for wireless control of these systems.

[image: image46.jpg]]




Figure 1. The Continuum - an Amplified Collaboration Environment at EVL.

One very desirable feature for these meeting rooms is for users to be able to just walk in such an environment and transmit the screens of their laptops or PCs to remote displays; which could be other PCs, tiled-displays or stereoscopic systems. Another desirable feature would be to do so without requiring installing any software/hardware on the source machines to do the streaming. The visualization that has to be streamed could be something as simple as a presentation running off a laptop to the output of 3D visualization software running on a multi-processor machine.
1.1.2 Scientific Visualizations:


Data visualization is an application of computer science concepts that touches almost every other scientific field. From simple 2D graph representations of time-dependent sensor data to heavy computationally demanding 3D simulations, data visualization proves to be as important as the application itself. Over the recent years, there has been a significant impetus driving innovations in the graphics hardware industry. Now users can buy inexpensive commodity 3D graphics cards for their PCs, which are capable of processing millions of polygons per second; something that was considered to be the realm of specialized supercomputers till 5 years back. This has obviously led to a spate of ideas to do better visualization research with more data than was ever possible. However since processing large data-sets also means that we need large computing power, the other area that has been influenced as a result, is that of distributed computing using clusters. Clusters have proved to be an effective means to build cheap and low-end supercomputers with commodity hardware and software. Combined with the latest graphics hardware, they are capable of visualizing large and complex data-sets. 
Figure 2 shows the schematic diagram of a typical scientific visualization pipeline. It consists of four stages or phases, viz. storage, computation, rendering and display. The storage stage would typically store data in the order of several gigabytes, even terabytes. The computation (or processing) phase reduces the data to its visual representations and the rendering phase finally converts the visual primitives to pixel data, which can be seen on displays. However as in distributed environments, each of these phases can be on a cluster (or a supercomputer), hundreds of miles apart, there needs to be a mechanism to transfer data from one phase to the other. And in most situations it just makes sense to try and send the output of the computation or rendering phase to remote machines than the output of the storage as the amount of data to be transferred is lesser by magnitudes of 1 or more.

[image: image2]
Figure 2. Scientific Visualization pipeline

Let us consider the case where the rendering machines are a shared resource offered by a supercomputing center, thousands of miles away from the researchers running the code. In this case, the researchers want to see the resultant visualization in its entirety, locally on their site. The reader should keep in mind that scientific visualization applications are capable of producing high-resolution video streams at the rate of multiple gigabits/second, which require a substantial amount of CPU and system resources to transmit (or receive). But since the applications generating the scientific visualization themselves take up a lot of resources on the computing machines too, they leave no (or little) resources to stream the video to the desired destination. One way to solve this problem is to offload the graphics streaming load to a dedicated set of machines.
Since resources are at a premium, we might also want to offload any graphics post-processing to a different set of machines. This post-processing can be any sort of image enhancement or data-archival phase which requires streaming of the graphical output of one machine to another. In fact, we might want to set-up a pipeline consisting of many stages for post-processing. The following figure (Figure 3) depicts such a pipeline.


[image: image3]
Figure 3. Graphics processing pipeline constructed using n machines.
1.2 Visualizations and displays

Collaborative environments and scientific visualization applications span across a wide range of technologies and the visualizations generated can be as varied as the display of a standard PC to the output of specialized hardware. In this section we shall talk about the different types of configurations that are possible and give a brief introduction to the technologies behind them.
1.2.1 Output of a single computer

These are the single displays from standard platforms such as PCs, SGIs, Sun, Apple, etc. The graphics output is typically a screen ranging from 640 x 480 pixels to 1600 x 1200 pixels and higher in resolution. The computing platform may comprise of one or more processors and can run their own choice of operating systems. This is the most common configuration for most computing platforms.

[image: image4]
Figure 4. Display from a single computer generating visualization

1.2.2 Tiled Displays

Tiled-displays are made up of the graphical output screens of many computers, tiled together to give the effect of a singular large display. They are used for high-resolution visualization applications with requirements that cannot be solved by present day display and computing technologies.
Research laboratories, such as EVL (Electronic Visualization Laboratory), have been actively involved in doing research with cluster driven tiled displays. Figure 5 shows picture of EVL’s latest cluster driven tiled display, which is a set of 3 x 5 tiles each with a resolution of 1280x1024 pixels. Thus the tiled display, dubbed as the Perspectile, is one large screen with a collective resolution of 6400x3072 pixels. The cluster driving the display is made up of 16 dual Pentium Xeons nodes with 512 MB of RAM on each node. The nodes run their own copies of Red Hat Linux 7.3 and share NFS mounted disks through over a gigabit Ethernet network. 

[image: image5] 
Figure 5. EVL’s 15 tile tiled-display running Vol-a-Tile; an interactive, real-time volume rendering software.

Figure 5 shows the cluster running an interactive, real-time volume rendering software called Vol-a-Tile, which allows users to load and browse volume data-sets at high-resolution. This is an example of an extremely computation intensive application which utilizes a lot of CPU and graphics hardware on the cluster. However it is also an example of a typical application that the cluster is designed to run. Other examples are rendering of interactive fluid dynamic simulations, large particle system models, medical visualizations etc.
1.2.3 Stereoscopic Visualizations

Stereo plays an important role in visualizing 3D graphics by providing depth perception to give an out-of-the-screen effect. Stereo displays finds acceptance in visualizing scientific data-sets as it provides an extra dimension to the display. Systems capable of handling stereo visualizations have to generate two view-points of the same 3D visuals. One stream has to be generated from the left eye’s perspective and the other from the right eye. The two streams have to be shown to the user at the same time in a synchronized fashion to produce the stereo effect. 
[image: image6.wmf] 


Figure 6. Users interacting with a passive stereo system called the AGAVE at EVL’s AccessGrid room.

Stereoscopic displays are broadly categorized as active or passive. Active displays usually require the user to wear glasses which contain a mechanism to synchronize the shutters in the glasses with the display. By synchronizing the opening and closing of the shutters with the display, each of the eyes is made to see only its perspective. Passive stereo systems on the other hand use cheap glasses with optical filters to achieve the same effect. Figure 6 shows users interacting with a passive stereo system called the AGAVE [3].
1.2.4 Other standard and non-standard displays

It is possible that visualizations can be generated from devices other than computers, like the output of specialized scientific hardware e.g. medical imaging equipment, VCRs, cameras, devices emulated in software, game consoles, PDAs etc.
1.3 Problems associated with streaming visualizations

In this section we shall discuss the issues involved with streaming high-resolution video from various devices over high-speed networks. This thesis will attempt to address all these issues and try to provide a satisfactory solution to them. The main problems faced are:
· The source hardware/software has to be designed to stream graphics. The system responsible for converting the video data to network streams should have a network interface for streaming and should be aware of the networking protocols involved.
· The video stream may be of the order of multiple gigabits per second. Scientific visualization applications are usually capable of generating high-resolution video at high frame-rate. Applications such are medical imaging, cannot withstand artifacts generated from compression and so in many cases, the streams have to be transmitted without any form of compression. This puts considerable load on the sending and receiving machines to handle network traffic.
· The source and display machines have different resolutions. E.g. laptop to tiled display or vice-versa. In this case care has to be taken to appropriately scale the source video to the display resolution.
· The source and display machines are different platforms. Platform independence is a desired feature as distributed and collaborative environments are heterogeneous in nature.
· Ability to cater to a wide range of visualizations. As mentioned in the previous section, visualizations can be generated on many different configurations. Streaming from specialized hardware/software is also a desirable feature for scientific visualization applications.

· The graphics may have to be streamed over LFNs (Long Fat Networks). With the introduction of cheap wide area optical networking solutions, it is now possible to connect remote machines spread over a long distance using high-speed optical networks. However using these LFNs requires specially tuned transport protocols as conventional transport protocols were designed for slower networks. Application writers are typically not aware of networking details to handle this aspect.
1.4 Need to distribute network streaming load

Consider the graphical output of a typical PC, which is at a resolution of 1024 x 768 pixels. Transmission of 30 such frames every second at a pixel depth of 24 bits per pixel translates to 0.5 Gbps of data. Higher resolutions, as needed by scientific visualizations, such as 1600 x 1200 pixels, would amount to 1.3 Gbps of data. Transmitting an entire tiled display consisting of 15 tiles at 1280 x 1024 pixels each, means that we need to transmit approximately 14 Gbps of video data. Due to this nature and size of video data, we obviously need fast networks and fast computers to take care of the streaming. 
1.4.1 Fast Networks
Recent advancements with optical networks have produced commodity network cards that can be plugged into computers to get a network link of up to 1 Gbps. Soon there will be 10 Gbps network cards available off the shelf too. Apart from the gigabit network cards, it is now possible to route network traffic using optical switches. Optical switches allow setting up dedicated light paths between machines to pipe gigabit traffic without any congestion. Thus we now have an inexpensive and fast ‘bus’ between machines on a LAN, or even across the globe. Therefore over the past few years, network bandwidth has ceased to be a problem for most applications. 
1.4.2 Fast Computers
Tests show that network streaming by itself is very resource hungry and we need fast machines to stream data at high rates. A typical 32-bit Pentium Xeon machine @1.8 GHz, utilizes 70% of its CPU to stream UDP data at 1 Gbps. Unfortunately typical scientific visualization applications such as volume rendering of 3D data-sets, real-time interactive simulations etc also require a lot of computing power themselves and most of the time the best machines are not fast enough.
In such a scenario, where both visualization and streaming require a lot of resources, it seems to be wiser to be able to distribute the load of network streaming to dedicated machines. To make the situation worse, the network bandwidth has been growing at a rate faster than that defined by Moore’s law for the computing power. In other words, in the coming future the best computers will prove to be insufficient to utilize the networks optimally.

1.5 TeraVision: Overview and applications
One can envision TeraVision as a hardware-assisted, network-enabled “PowerPoint” projector for distributing and displaying scientific visualizations. A user who wants to give a presentation on his/her laptop, or stream output from one of the nodes of a graphics cluster simply plugs the VGA or DVI output of the source computer into the TeraVision Box (also called VBox for short). The box captures the signal at its native resolution, digitizes it and broadcasts it to other networked TeraVision boxes (see Figure 7). Though the capture card is one of the preferred means of getting a video stream into the system, the video source can be any other video device, like a USB/FireWire camera or software generating a visualization etc.
Furthermore, using the VBox one can also transmit an entire tiled-display provided there are sufficient VBoxes at each end-point. Since the tile configuration and resolution can be different at either ends, the TeraVision boxes provide the scaling mechanism to ‘fit’ the source video to the destination display. Two VBoxes can be connected to the twin-heads of a stereoscopic AGAVE [3] system to allow streaming of stereoscopic computer graphics. The VBoxes take responsibility for the synchronization for simultaneous capture of concurrent video streams on the server side and the synchronization for displaying the streams on the client side. The most basic TeraVision setup (Figure 7) consists of a server and a client connected over gigabit networks. The server has the video capture hardware for capturing high-resolution VGA or DVI inputs and the client can receive the streams and display them at various resolutions. The client can be either a Linux or Windows PC and does not require any specialized hardware for displaying the incoming video streams. So, even though the diagram depicts the server and client to be symmetrical, they need not be. A client may only need the video capture hardware if it wants to act as a video server during a collaborative session. This will be explained in later sections.

[image: image7]
Figure 7. Basic TeraVision setup. Note: The VBox acting as a server needs to have the video capture hardware for capturing the input video streams. The client on the other hand can be a Linux/Windows PC with a gigabit Ethernet adapter and a fast graphics card.


Since the graphics output of the rendering source is typically transferred to a TeraVision server using a video cable, the source machine is not loaded at all for doing the network streaming. The TeraVision servers take on the load for compressing (if required) and streaming the video data. Also the source can be any hardware platform running its choice of an operating system or it can be a non-standard specialized platform. There needs to be no changes made to the source software/hardware to perform the streaming.

The TeraVision system was designed to stream video over LFNs and contains network protocol modules which are tuned for this purpose. The system has been designed to offer a framework for adding new video sources, compression modules or network protocols to the existing ones. Thus an attempt has been made to make the system as flexible as possible for a wide range of scientific visualization and collaborative applications.
2. Teravision:  related work
In this chapter we will attempt to summarize the previous research and existing systems that are related to this thesis. Since the system proposed in this thesis does not exactly fall in any category per se, we will discuss categories which are related to the functionalities proposed by TeraVision, viz. video/graphics streaming and display pushing.
We can broadly categorize the existing systems and solutions as either software or hardware based.
2.1 Software based solutions

2.1.1 Remote desktop access

Most modern operating systems offer some form of a remote desktop access, which inherently also provides a means to push the computer’s display to remote machines. However since these mechanisms are typically designed to let users access a machine remotely over slow networks, they are designed to work with event based updates. In other words, these systems are supposed to use minimal CPU and network bandwidth by transmitting the screens only when a user interacts with it or when the software detects a change in the screen content. These design constraints do not allow display pushing at the rate and quality of a video stream, as needed by scientific visualization applications. Moreover, since a lot of 3D rendering nowadays is handled directly by the graphics hardware, an OpenGL (or equivalent) rendering surface cannot be available to another program. This makes it difficult for any program other than the rendering program to capture the screens for pushing them to remote machines
One of the most popular cross platform solutions, originally developed by AT&T, is called VNC (Virtual Network Computing). It is remote control software which allows users to view and interact with one computer (the "server") using a simple program (the "viewer") on a remote computer. It has many variants available today but as mentioned above, it’s based on event based updates, which make it difficult to use it for streaming real-time video. 
The other system that has received wide-spread acceptance is the Microsoft Remote Desktop which comes built in with the Windows OS now. The software, like VNC, is designed to minimize bandwidth utilization and resorts to techniques such as bitmap caching and clubbing updates for multiple events, which proves to be bad for real-time streaming.
2.1.2 Scalable / distributed graphics systems


Considering the scientific visualization pipeline of Fig 1.2, these systems attempt to stream the output of the computing phase to remote machines. Thus instead of directly transmitting the video pixels, the machines transmit 3D primitives representing the final visualization, to remote machines for rendering. The receiving machines are then responsible for rendering the pixels from the 3D primitives. These systems can scale across distributed and parallel architectures to provide a high throughput graphics pipeline for monolithic or tiled-displays.
2.1.2.1 AURA

AURA presents a C++ API that extends the capabilities in low-level graphics libraries like OpenGL or Direct3D with scene graph management paradigms and a virtual reality programming framework. It is developed by the Vrije University, The Netherlands [10]. It supports immersive virtual environments and also large tiled displays. Current implementations of AURA work on various platforms like SGI IRIX, Linux and Windows 2000.
The software allows the rendering of a 3D scene graph to be distributed to a tiled display using the high-speed interconnects of a cluster. The system is relevant to this thesis as in one of its operating modes, it attempts to stream graphics information to the various nodes driving a tiled-displays. However the approach uses streaming of polygon information, rather than video, to the nodes. Each participating node then proceeds to render its frustum or viewpoint of the scene graph [10]. This is a very effective way for distributing the rendering load to different nodes, but increases the load on the machine responsible for streaming the graphics primitives. Since the serving nodes are not designed to be scalable, there is an upper limit on the amount of graphics information that can served and processed. Moreover the 3D visualization has to be written with the AURA library to take advantage of its features.
Aura employs TCP by default, to stream data but it has also been tested with RBUDP to stream information over LFNs. Thus it is capable of streaming graphics information to remote clusters for rendering.

2.1.2.2 Chromium/WireGL

Chromium is a framework for scalable real-time rendering on clusters of workstations. It is based on the Stanford WireGL project [11][9]. It can be used on platforms like Windows, SGI IRIX and Linux.

Designed to work with many configurations, it is also capable of streaming OpenGL primitives to nodes of a tiled-display. It looks at the OpenGL commands being outputted from a program as a stream and provides ‘stream filters’ to manipulate them. The stream filters can distribute the polygon level information to the rendering nodes as required and then, like Aura, provide a synchronization mechanism to time the graphics frame-buffer refreshes across the nodes. It also provides the notion of plugging in modules for graphics pre-processing, in which instead of sending out the primitives directly to the screen, then are sent to other processing modules. In this way, a pipeline can be formed across many machines to do computationally heavy rendering.
Like TeraVision, Chromium also provides the notion of multiple servers and clients, which enables it to scale effectively for large data-sets. The difference lies in the fact that all the graphics pre-processing is done before the primitives are transmitted to the rendering machines. So the load of streaming the graphics still lies on the machines which are also doing the computation. As we have introduced in the previous chapter, the TeraVision pipeline works with video, resulting from a graphics device, and all the processing in the pipeline thus happens at the pixel level.

2.1.3 Media streaming software


There are too many solutions available for streaming video from files, cameras etc over the web to be enumerated here. Though some of them are capable of streaming video at high resolution, it is safe to say that they are not flexible enough to be able to be used for scientific visualizations or for handling complex display systems such as tiled or stereoscopic displays. Quite a lot of these systems also have the restriction of being able to run the video source only from very specific platforms.
2.2 Hardware based solutions

Sandia National Labs has a patented hardware approach, which they call as the ‘Be There Now’ Hardware, which is very similar to the TeraVision approach for streaming video. The solution is a embedded system, running Linux on re-programmable logic arrays which provides dedicated hardware for video streaming. Like TeraVision, it accepts the VGA output of a computing device and digitizes it, compresses it and streams it on gigabit networks. It uses an MPEG encoder/decoder on a chip to provide real-time data compression. It has also been tested over LFNs and provides excellent video quality and frame rate.

However because of the hardware approach, the system is not very flexible. It is not apparently easy to integrate new video sources, compression modules or network protocols in the firmware. The system is also not designed to be scalable and in its present configuration, it can only transmit a one-to-one video stream. In other words, it is not designed to handle streaming of more complex video systems, such as stereoscopic displays or tiled-displays.

The following Table 1 compares TeraVision with the existing systems. From the table we can see that most systems were not designed to be scalable. Scalability is a feature of a system, which allows it to increase its capability by adding more such similar systems. In other words, if a TeraVision box is capable of handling video at X bits per second and we want to transmit nX bits per second, we should be able to use n TeraVision boxes to take care of the load.
TABLE I 
COMPARISION CHART OF EXISTING SYSTEMS AND TERAVISION
	Features
	VNC
	Microsoft
Remote Desktop
	Aura
	Chromium/
WireGL
	Sandia’s ‘Be There Now’
	TeraVision

	Handles high-resolution graphics
	No
	No
	Yes
	Yes
	Yes
	Yes

	Stream over LFNs 
	No
	No
	Yes
	No
	Yes
	Yes

	Scalable servers and clients. 
	No
	No
	No
	Yes
	No
	Yes

	Can stream to and from tiled displays
	No
	No
	No
	Yes
	No
	Yes

	Can run on dedicated servers 
	No
	No
	No
	No
	Yes
	Yes

	Works without modifying the source software/hardware
	Yes
	Yes
	No
	Yes
	Yes
	Yes


The other apparent features which are lacking in most of the systems are capability to stream over LFNs, handle complex display systems and be able to run the streaming on dedicated machines. In the following chapters, we shall discuss how TeraVision addresses all these issues, in detail.
3. tERAvISION: Concepts, sYSTEM DESIGN AND iMPLEMENTATION
3.1 Concepts

This section attempts to introduce the pertinent concepts that the reader needs to be familiar with before proceeding to the advanced sections such as System Design and Implementation.

3.1.1 TeraVision Server
The TeraVision server is the machine (or set of machines) which provide the video streams. The direction of video is always from server to client. The server process (or processes) can be run on dedicated machines which have some video capture hardware to take in the video from the source machines. But if there is a means to feed the video from the source to the TeraVision server process through software mechanisms, such as IPCs, we can run the servers on the same machine as the source process providing the video. One server process may be serving many clients at the same time and all the streams being sent out will be synchronized with each other.

3.1.2 TeraVision Client
The client does not require any specialized hardware as long as it has a network interface fast enough to handle the desired video bandwidth. The client processes are responsible for displaying the incoming video streams on the machine’s graphics output. One client may receive its video streams from one or more servers. This is especially true in the case of tiled displays, where the source tiled display is of different resolution/tiles than the client tiled display. All the component video streams that make up the display are synchronized internally before being shown on the display.

3.1.3 TeraVision Master
Each TeraVision server or client process either operates in the Master or the Slave mode. A TeraVision server side would consist of one master and multiple slaves. Since there can be any number of processes that make up the server (or client) side, there has to be one point of control for all the processes and the master process serves that purpose. The master process is responsible for synchronizing all slave processes registered with it. The user interacts with the master process but the commands are broadcasted to all the slaves. Most of the control plane interaction that happens between the server and the client happens between the master server and the master client. And as one of the important roles, the master is also the one that sends the synchronization messages to all slaves. The synchronization messages are very important to time the capture (on the servers) and the display refreshes (on the clients) across machines.

Figure 8 graphically depicts the relationship between the master and the slave processes. In the following sections we shall discuss the interaction between the various master-slave and server-client pairs in detail.


[image: image8]
Figure 8. Master-Slave interaction.
3.1.4 TeraVision Slave
The slave processes cannot run by themselves. They are spawned by a master and after coming up, they need to register with a master process in order to operate. They depend on the master for providing the sync messages, user interaction messages and control plane information.

3.1.5 Video Source
This can be an actual physical device or a software emulation of a video source. Each server needs to have at least one video source in order to operate. If the server side consists of many TeraVision server processes, the video sources should ideally be capable of synchronizing their video streams.

3.1.6 Server or client Montages
Since the number of tiles on the server and client side need not be the same, many possible cases arise where a client might receive its video in parts from multiple servers or a server might serve parts of its video to multiple clients. These rectangular ‘parts’ of the video are termed as montages.
3.1.7 TeraVision processes


Since the server (or client) side of TeraVision may contain many machines working together to source (or sink) video data, multiple copies of the TeraVision software are run on each of the participating machines. These copies or processes need to be synchronized and control information has to be passed between them for their proper operation.
3.2 Possible configurations


The most basic configuration of a TeraVision system consists of one server and one client as shown in Figure 7. The setup has a single source machine connected to a TeraVision server which streams the video to a single client.

However, as discussed before, it is possible to operate more than one TeraVision box at one time and synchronize their operations for handling complex display systems. When more than one TeraVision box is being used, one of the boxes operates as a master and the rest as slaves. Figure 9 depicts a situation where two TeraVision servers are used for streaming stereoscopic video to multiple client sites. The two streams (Left and Right eye video) are synchronized during capture on the servers and then again on the two clients at every site before the display.

[image: image9]
Figure 9. TeraVision setup for streaming stereoscopic video. 
Similarly, multiple TeraVision boxes can be used for streaming the component video streams of a tiled display. Figure 10 shows the other possible configuration of the TeraVision system, where a tiled display is being streamed using multiple VBoxes at a site. As in the previous case, all the servers synchronize with each other to capture the component streams. And the clients synchronize before displaying all the component streams simultaneously.

[image: image10]
Figure 10. Example of streaming tiled displays using multiple VBoxes at a site.

3.3 System design

One of the main goals of the TeraVision system design was to make the architecture as flexible as possible in order to facilitate incorporation of new video sources, compression algorithms and networking protocols easily in the system. This would thus provide a framework for future expansion and experiments and allow for improving performance and adding new features. It would also allow TeraVision to be adapted to a wide spectrum of scenarios. Thus one of the first steps was to identify the sub-systems which would be frequently liable to modifications with change in operating requirements. There are three such sub-systems, which satisfy such a design need and they are:

· The video source modules
· Compression modules
· Network protocols modules

Figure 11 and Figure 12 show the modular block diagram of the system while behaving as a server and client respectively. The three main blocks of the system, as enumerated above, are also the most computation and I/O intensive parts and are arranged in a pipeline fashion, with the output of one being fed as the input of the next. One of the main considerations for the pipelined design was that these three blocks tend to have a throughput of their own, which are decided by factors such as system load, network congestion, type of video input etc. and thus we would like them to operate independently of each other. Each block will try to process its input as fast as the underlying OS/hardware will allow it to. A multithreaded approach allows the software to take advantage of multiple CPUs at the hardware level. The implementation of the software also tries to ensure minimal memory copies and utilize hardware supported features such as MMX to enhance performance. We shall delve into each of these sub-systems in detail in the following sections.

The system is currently available for the Linux and Windows platforms on the Intel IA-32 architecture and plans are underway to port it to the IA-64 architecture. 

[image: image11]
Figure 11. Block diagram of TeraVision server design

The TeraVision system has been implemented on PCs, which are machines that provide direct user input/output devices like the keyboard, mice and displays. However there are scenarios in which the system will prove to be useful, while running as an independent embedded system. One such case can be a dedicated bank of TeraVision servers which are capturing the rendered output of a cluster and streaming them to a remote tiled display. Such a setup does not require a direct user interface per se, since there is no need for users to interact with the machines. In such a case, a remote interface is required to configure and control the TeraVision processes. The system provides a GUI and a console based interface for this purpose, both of which can be run from a remote machine and can communicate with the main TeraVision processes over sockets.

[image: image12]
Figure 12. Block diagram of TeraVision client design

There is also a substantial amount of message passing that happens between the Master and Slave processes and between the server and client to initialize and control remote processes. For this purpose each TeraVision process hosts a control channel, which is an asynchronous queue used for sending/receiving control messages. Apart from the control channel, each process also hosts a sync channel, which is essentially a low latency channel with possible real-time priority, to allow remote processes to closely synchronize with each other. The system core is the ‘glue’ code which is responsible for handling the interaction between various modules.
3.4 System modules and their design considerations


In this section we shall go over the various system modules and talk about the specific considerations which were given for their design. In the cases of the important modules, we shall discuss the implementation details to the level of the class diagrams. This section also provides basic guidelines for developers interested in building loadable modules for TeraVision. The reader is also encouraged to go through the bibliography to familiarize himself/herself with the terminology before going ahead with the following sections. 
3.4.1 User Interface Module:

As all user interfaces have to, the TeraVision system also has to provide an interface which is intuitive and easy to use. But apart from this, the UI has the following special requirements.
· Remote management: Since the system in its very nature is distributed, it is important to be able to control it remotely. There are also scenarios in which the TeraVision servers or clients might run as embedded systems, which by themselves do not have a direct user input/ouput device attached to it.
· Single point control: The TeraVision system at any given time may comprise of many processes running across various systems. There is a need to control all the processes from a single interface. 

· Emergency back channel: This is a special requirement of systems like TeraVision, where the computer running the processes might stream data over the network, which is close to the network limit. In such scenarios, there is always the possibility that network switches and routers will get inundated with too much traffic, making it difficult to do remote management with a GUI. Thus the UI needs to provide a backchannel which can be used for passing minimal commands to the TeraVision processes to control them.

· Plug-in specific GUI screens: Since the design uses a plug-in approach to adding new compression modules, video sources or network protocols, it is not possible to know about the configuration screens for these plug-ins. Thus the system should have a provision for ‘adding’ new configuration screens as required, without modifying any of the main UI code. For e.g. a new compression module added to the system may provide a configuration screen to modify the quality of compression using hardware acceleration. The loadable modules have a generic member function in the abstract class, which they are derived from. This function, advSettings(), is present in all the modules and is responsible for providing the configuration screen for the module. The idea is that the user can chose a module that he/she wishes to use from the main TeraVision GUI and then simply click on a generic configure button to bring up the configuration screen specific to the module.

Currently the TeraVision system provides a GUI, built using FLTK (Fast Light Tool Kit) and a command console through a telnet session. Both the options require the UI to connect to the TeraVision process over sockets and pass messages to control the process. The messages passed are queued in a FIFO on the receiving side. The UI servers are essentially threads which run in the background and pickup the messages from the network (TCP) sockets. The messages are then put in a queue and the TeraVision processes polls the queue at logical intervals to check for user interaction. The following Figure 13 further depicts the interaction of the UI modules with the master process. Typically all the UI messages are broadcasted to the peer slave processes, registered with the master. This provides the user a single point of control for all the processes.
Right now the console provides control through minimal commands and provides the emergency backchannel for controlling the application. The GUI uses configuration files for storing the system wide settings and module specific configurations. These files are then read by the main TeraVision process at run-time.

[image: image13]
Figure 13. Interaction between the UI modules and the TeraVision process.

Figure 14 shows a snapshot of the TeraVision GUI and indicates the function of various widgets on the screen. The role of some of the widgets is different in the server and the client mode. We shall briefly consider the main widgets and talk about their roles.
· Play button: While operating as the server, the play button:
· Spawns the master TeraVision process. 

· The master process then in turn spawns all the slaves. 

· An ‘initproc’ UI message is broadcasted, which initializes the video source and compression modules in all the processes and then brings up the network protocol modules in a server mode. 
· A ‘play’ UI message is then broadcasted to start the video source. The processes are then ready to accept requests from clients.
However while operating as a client, the play button:

· spawns the master TeraVision process. 

· The master process then in turn spawns all the slaves. 

· An ‘initproc’ UI message is broadcasted, which initializes the compression modules and then the network protocol modules in a client mode. Next, the display module is initialized. The clients then connect to the server(s) and wait.
· A ‘play’ message is broadcasted to all the processes which cause the clients to start receiving and displaying the video streams from the network.
· Pause button: The pause button does not stop the processes, but merely interrupts the video streams. The system can be resumed by sending the ‘play’ message again. While operating as a server, when a TeraVision process receives a ‘pause’ message, it requests the video source to temporarily cease the video frames to be fed to the common circular buffers. This automatically causes the network modules to pause too, since they do not have any fresh frames to stream.

However while operating as a client, the ‘pause’ message causes the network modules to temporarily cease receiving any data from the network. Thus the display module also freezes.
· Stop button: The stop button essentially sends out a ‘stop’ UI message to the TeraVision processes. The various modules are requested to stop and to get ready for a clean-up. Soon after then, the modules will be offloaded and the process will be shutdown.

· Server IP and Port input boxes: These are only pertinent when the TeraVision process is operating in the client mode. The users can enter the IP and port information of the master server process here.

[image: image14]
Figure 14. TeraVision GUI main screen.

Figure 15 shows the UI screen for the system configuration, from where the configuration screens for specific modules can be displayed. Once a module is selected through the drop-down box, the GUI client program loads the module and when the user hits the ‘Configure’ button, it calls the advSettings() function, inside the module to call its configuration screen.

[image: image15]
Figure 15. Configuring individual modules through the system configuration screen

3.4.2 Control Channel
The various TeraVision processes participating in the system need to pass a lot of messages between themselves for initialization and control at all times. The control channel is an asynchronous message-passing channel that is hosted by all the TeraVision processes. Though the channel has been implemented over TCP sockets, an instance of the channel does not have to maintain a connection with any other instance. The message sender can just call a send() function with the IP and the port of the receiving machine as the parameters. The channel then attempts to connect to the remote instance momentarily, passes the message and breaks off the connection. The messages passed are queued at the receiving side by a server thread and can be extracted either on the basis of type/priority or if the communicating endpoints are multiple pairs of threads, the implementation provides a notion of virtual channels that the multiple communicating pairs can use to pass messages to each other. 
As mentioned above, the receiving side of the channel is a server thread, which continuously listens for clients and services them in a sequential fashion. Thus only one control channel client is allowed to connect at one time. After the message has been passed between the client and server, the connection is broken, allowing the server to service the next client. 

This design allows a many-to-many message passing mechanism between any numbers of processes without having to maintain any persistent connections between the processes. The messages passed are of fixed size since it’s easier to manage them with fixed size buffers.
3.4.3 Sync Channel

The sync channel is a high-priority, low-latency channel used by peer server (or client) processes to closely synchronize the video streams across processes running on different machines.  This is one of the more important components as it decides the performance of the system to a large extent.  Since a TeraVision server (or client) may comprise of many processes with each process sending or receiving many video streams, there is a need to synchronize these processes in real-time, so that the video at the display end does not appear to be non-uniform. 

The sync channel operates in two possible modes, viz. master and slave. The master TeraVision process operates the sync channel in the master mode and the slave TeraVision operates them in the slave mode. Each sync client is responsible for connecting to one sync master during initialization and the sync master is responsible for sending the sync ‘pulse’ (or sync message) to all the sync clients registered with it. 
The processes need to be synchronized both at the server and client side. On the server side, all the TeraVision server processes might need to synchronize at the following two levels:

· At the video source level: Since the video sources providing the video frames can be independent software/hardware components, running at their own rates, there is often a need to start/stop the devices at precisely the same time so that the component video sub-streams are fed into the system properly.
· At the network level: Synchronizing the video sources, ensures that we can look into the common circular buffers across machines and say which video frames correspond to each other. However once the frames are transmitted on the network, there is no guarantee for the order or rate at which they would reach the clients. Thus just before the transmission, the TeraVision servers synchronize one more time and this time the master server sends across a frame number with the sync pulse that all clients ( and the master) use for stamping the next transmitted video frame with. This step happens for each video frame that is transmitted per stream so that when the frames reach the clients, all the client processes know which frames in their respective buffers correspond to each other.
But at the client side, we do not need to synchronize at the network level in order to receive the frames. So the network threads of the individual TeraVision clients are free to receive video frames at their own rates. However synchronization is required before displaying the frames. Thus the sync pulse is sent out by the master process before displaying every frame. The slaves listen for this message, which also contains the frame number to be displayed. Thus on receiving the message, the slaves load up the appropriate frame from their common buffers and display them on the graphics output.
The sync channel has the following requirements which we will discuss individually with some of the implementation details:
· Low-Latency: This is one of the primary requirements of the sync channel. The sync pulse has to be sent from the master to all the slave processes with minimal delay to get the best results. Since the sync channel is implemented over TCP/IP sockets, there are buffers and system/driver queues which can delay the transmission of the sync message. In the implementation of the sync channel, one definite way to ensure good latency between processes is to switch off the Nagle’s algorithm in the TCP stack. This can usually be done by setting the TCP_NO_DELAY option at the TCP socket level. Nagle’s algorithm, as explained in RFC 896 [7], is used to automatically concatenate a number of small buffer messages; this process (called nagling) increases the efficiency of a network application system by decreasing the number of packets that must be sent. 
· High-Priority: Disabling Nagle’s algorithm however does not yet guarantee any upper bound on the amount of time needed to send the sync message across. Since the sync channel operates on TCP sockets, it is greatly affected by factors such as system load, scheduler’s time slice resolution, buffering delays etc. In other words one cannot say for sure that the sync messages are transmitted (or received) at the instant when the application wants to. We need some notion of real-time guarantees from the OS to ensure that the sync messages are indeed sent across with the highest possible priority. In the current implementation of the sync channel, real-time support has not been put in. It can be considered as a part of the ‘future works’ section.
· Handshake over TCP: When messages are transmitted over TCP, the protocol guarantees that the sender blocks to send the data to the socket buffers on the other machine but does not guarantee that the message has reached the intended application. And for the sync messages, it is imperative that the master knows that messages have been delivered to the slaves (and not just to their socket buffers). Thus a very simple hand-shake protocol is required over TCP to take care of this. Figure 16 shows how this handshake works. 

[image: image16]
Figure 16. Steps for handshake over TCP

Whenever a client is ready to receive a sync message, it is required to send a TV_SYNC_SLAVE_UPDATE message to the master. This typically is done right after a successful sync. And on the master side the sending of a TV_SYNC is delayed till all the slaves have indicated their readiness by sending a TV_SYNC_SLAVE_UPDATE message. The sending back of the TV_SYNC_SLAVE_UPDATE message can also be viewed as an application level acknowledgement to confirm the delivery of a TV_SYNC message.
3.4.4 Video Source Module

The video source module provides the software interface for a video device. So in essence it is a high level driver which makes various video devices available through a standard interface. All modules are inherited from an abstract base class tvVideoSource and are implemented as dynamically loaded libraries. This approach was chosen as it allows leeway for incorporation of different video devices in the future without modifying the core TeraVision code.
Video sources can be broadly categorized as internal or external.
External video source examples:
· Via video capture hardware

· USB/Fire-wire cameras etc
Internal video source (video devices emulated in software) examples:
· Rendered output of visualization software
· Play back of flip-book animation or movie files.
The TeraVision system was designed to alleviate the display-pushing problem for a wide range of scientific visualization applications. Many times scientific visualizations need more than a simple PC for generating the graphics. The software might need a supercomputer or a cluster of computers to generate the graphics. And when the software needs a lot of computing power for the rendering part, there is no CPU remaining for streaming the video output to other machines. In such a scenario, it is preferable that the video source is external to the TeraVision server(s) so that the CPU on the servers can be dedicated to the purpose of video streaming, without being affected by the load on the machines generating the graphics. The current implementation of the system currently support the I-RGB cards from Foresight Imaging Inc, which are capable of capturing 1600x1200 pixel screens at up to 60 frames per second. Figure 3.7(a) further illustrates how external sources are integrated with the TeraVision servers.

[image: image17]
Figure 17. Example of external sources with TeraVision servers.

It is not possible to always justify dedicating machines for TeraVision servers, especially when the graphics being generated by the source computer does not require intensive computing and leaves enough computing power on the machine to also take care of network streaming. In such cases we would like to run the TeraVision servers on the same machines as the one generating the graphics. The video source plug-in in this case would need to relay the graphical output of the software to the TeraVision process by using IPC (Inter Process Communication) mechanisms or by some other means. In the current implementation, there is a plug-in available for an internal video source. The plug-in loads up animation frames into memory and then feeds them into the common buffers of the TeraVision process, at a user specified rate, to emulate a video source. 


3.4.5 Compression Module


The compression modules are used for reducing the amount of data being transmitted across the network. Servers and clients can opt to either use compression or run uncompressed video streams. By default the compression is switched off as it is useful only in situations when the network bandwidth is smaller than the desired uncompressed video source bandwidth. The main requirements of the compression modules are:

· Efficient algorithm: Each TeraVision system typically handles many hundreds of megabytes of data every second. Since all the data has to go through the video source, compression and network pipeline, inefficient handling of data can really hurt performance. The compression module is potentially one of the most CPU intensive modules in the system and so care should be taken to keep number of memory copies and data parses to a minimum. For the current system, an RLE algorithm with a quantization noise filter was implemented. The algorithm has been discussed in detail in later sections and is implemented as a single parse, single memory copy module.
· Transmission over unreliable channels: When compressed data is transmitted over unreliable channels (e.g. UDP or Multicast), care has to be taken to recover from packet losses. One simple way of dealing with packet losses, without introducing data-redundancy is to make sure that the compressed data structures are aligned along the border of the network packets carrying them. So when there are packet losses, there is an integral loss of information, which allows the decompression algorithm to recover data from the remaining packets. Other techniques such as forward error correction introduce data redundancy in the transmitted stream to allow from recovery from loss.
· Real-time requirements: For a large number of compression algorithms, the amount of CPU time taken for compressing a video frame is a factor of the content of the video frame itself. Variables like color range of the pixels, amount of noise etc. can affect the degree and quality of compression. Ideally for the TeraVision compression modules, apart from efficiency we would like the encoding and de-coding times to be as independent of these factors as possible. In other words, we would like a known upper bound on the compression-decompression times which has the smallest variance possible.

Since the TeraVision servers and clients are simultaneously streaming parts of the same big video stream, it is possible that at any given time, the video sub-frames handled by certain server-client connection are quite different than the others. If the compression times are dependent on the content of the video frames, we will have some streams lagging behind the others. Since all the video streams are synchronized, the net rate of the video streams would be decided by the rate of the slowest stream. To keep the load balanced on all the participating machines, we want compression times with minimal variance.

The TeraVision compression modules are also implemented as dynamically loadable libraries and are inherited from the abstract base class, tvComprModule. The compression modules are supposed to provide functions for both compression and decompression and are expected to indicate a failure if they cannot compress the video frames.
3.4.6 Network Protocol Modules


The network protocol modules are also implemented as dynamically loadable objects. The channel that they provide for data delivery can be either reliable (e.g. TCP or RBUDP) or un-reliable (eg. UDP, Multicast etc.). In the current implementation of the system, we have a TCP module, a UDP module and a Multicast module. Like all other modules, the configuration for individual libraries can be done through a GUI screen that the library provides within itself. All networking modules should be initialized either in the server or the client mode. When acting as a server, the module can be put into the listen mode where it waits for clients to connect and pull video data. The video data is always passed from the server to the client and never the other way around. Apart from the basic requirement of providing a transport layer, each individual protocol has its own peculiar needs. Thus instead of generalizing the design requirements of the network protocol modules, we shall consider the three implemented modules separately and briefly discuss about them.
3.4.6.1 TCP module
This is the simplest of all networking modules as it is essentially a wrapper around TCP sockets. The user can specify the socket buffer sizes for the send and receive buffers, from the configuration screen. The default value of the socket buffers are typically set to 64 Kbytes. This is insufficient for most links on a LFN (Long Fat Networks) and needs to be adjusted according to the BDP (Bandwidth Delay Product). Figure 18 shows a snapshot of the configuration screen for the TCP module.

[image: image18]
Figure 18. TCP module configuration screen.

3.4.6.2 UDP Module:  
TCP does provide a reliable transport layer by taking care of packet losses, flow control and data integrity but it has performance limitations when it has to be used to send large amounts of data over LFNs. Since the present day optical networks are extremely reliable, the physical and data-link layers are rarely responsible for losing any packets, UDP streams can prove to be good option for streaming data over LFNs. In fact using UDP to stream video data we find that we can get a higher throughput than TCP, albeit with some losses. Fortunately video streams can tolerate packet losses, which simply translate to losing pixels in the video frame. However there are the following special considerations that we have to give while using UDP:
· Recovering from packet losses and out of order packets: If we simply break up the video frames into UDP packets and send them across the network, it would not be enough. There can be packet losses along the way or the order in which the frames were sent might not be preserved, which can distort the video frames. Thus when we receive the packet on the other end, we should be able to recover from such errors. In the current implementation of the UDP module, a simple protocol has been implemented over UDP for this purpose. This protocol has been explained in detail in the section 4.2. It solves the problem with UDP streaming as follows:

a. Each network packet carries a header stamped with a unique id which identifies the video frame that it belongs to.
b. The header also carries offset information within it, which tells the receiver where to place the payload in the entire frame. This way when packets are lost or duplicated, we still know where the data has to be correctly placed in the video frame. 

· Simulating connect: Unlike TCP UDP sockets are un-connected in nature since the protocol is not connection oriented. However as a requirement for the TeraVision network protocol modules, the UDP module while operating as a server should be able to go in a listen mode where it ‘listens’ for clients to connect before pushing the video data. Thus we try to simulate a dummy connection phase by setting up a temporary TCP server socket. The client connects to the server TCP socket by creating its own temporary TCP client socket. The client then passes the information about the UDP socket that it actually wants to receive the data through this TCP connection. The TCP connection is then torn down and the server starts streaming UDP data towards the client.

· Configurable packet sizes: The standard size for an Ethernet packet is 1500 bytes. After discarding the space required by the Ethernet and IP headers, we are approximately left with 1450 bytes on which we can place our UDP data. In other words all the video frame information is broken up into 1450 byte chunks before being sent across on UDP packets. However some networks and OSes support other sizes, which might give better performance under certain conditions. Thus the user should be able to specify the packet size to use for the UDP streams. The following Figure 19 shows the configuration screen for the UDP module.

[image: image19]
Figure 19. UDP module configuration screen.

3.4.6.3 Multicast Module:

IP multicast is essentially done over UDP sockets with the difference that the range of IP addresses used is restricted to 224.0.0.0 to 239.255.255.255. Apart from this each process has to request the OS to add it to a multicast group on the network. This information is passed onto the routers/switches which are actually responsible for replicating the multicast packets and forwarding them to the interested hosts/networks. The OS picks up the multicast packets on the network and if there is a process which belongs to the multicast group of the packet, it passes the packet up to the higher layers towards the application.

Since the Multicast is also essentially unreliable, all the special design considerations for video streaming that were given for UDP also apply to multicast video streams plus the following.
· Specify network interface: The OS usually has entry in the routing tables to decide how the multicast traffic has to be handled. But it’s possible to have machines with multiple interfaces on the same network or when the multicast traffic can be sent over multiple interfaces. In such a case we want the user to be capable of specifying the network interface to use. Figure 22 shows a snapshot of the configuration screen for the multicast module.
Generating a multicast address for every video stream: The current implementation of the multicast module supports multicasting of just a single video stream from a server to multiple single clients. Multicast of entire tiled displays, which involves transmission of multiple video streams from the server(s) to the client(s), is a slightly more complex problem requiring some more work. Consider the case where there is a single TeraVision server, sending out just one video stream over multicast to clients expecting it. As shown in Figure 20 this is the simplest case of multicasting.

[image: image20]
Figure 20. Single video stream multicast from one server to clients


Now let us consider the case for multicasting a tiled-display. Figure 21 shows the requirements of such a setup. There is a 2x2 tiled display which is being multicast to 2x2 tiled display clients. There are four video streams which are being transmitted (one per server). However since each stream has to go to one TeraVision client box at each client location, each stream has to be transmitted with a different multicast address. This is a simple case where the number of client tiles is the same as the number of server tiles. The situation quickly complicates when this is not the case. For e.g. if the clients were a 3x3, there would be a total of 12 transmitted video streams. Thus there should be enough multicast addresses available to take care of all possible situations and the server(s) and client(s) should be able to take care of allocating these addresses to the individual streams, dynamically at run-time. This is not taken care of in the current implementation of the system and is a part of the future work.

[image: image21]
Figure 21. Multiple video streams multicast from many servers to many clients.


[image: image22]
Figure 22. Multicast module configuration screen.
The network protocol modules are inherited from the abstract base class, tvNwProtocol as defined in the tvNwProtocol.h header file. The class diagrams for the modules are as shown below.

4. Specific capabilities

In this section, we touch upon some very specific issues which were addressed during the system design. The approaches used for tackling these problems were major factors in deciding the performance and flexibility of the system as a whole.
4.1 M x N to X x Y scaling


If we want to stream one display to another, there should be no theoretical restriction on the number of pixels that the source can transmit and what the client can receive. But since hardware always has an upper bound, TeraVision was designed to be scalable, where multiple TeraVision boxes can synchronize together to act as one large capture card on the server side. And on the client side, the system again synchronizes to provide one large collective display. 

During the initial handshake phase, all the slaves on the server side register with their masters. The master thus is aware of the total pixel resolution on the server side. Similarly on the client side, the master is aware of the collective resolution of the display. The master client then proceeds to calculate the video stream mappings for all the clients. Since there can be any number of tiles on either side, a server might be serving multiple clients at any given time or one client could be receiving its video montages from multiple server. The following Figure 23 illustrates this graphically

[image: image23]
Figure 23. Scaling source video to client display

The master client has to inform all the slave clients about their respective mappings, which is done through the control channel. We make the assumption that the all tiles on the client side have the same display resolution and also all the tiles on the server side have the same resolution. Consider the following parameters:

Xs – pixel width of each server tile



Ys – pixel height of each server tile



Xc - pixel width of each client tile



Yc - pixel height of each client tile

Ms – Number of horizontal tiles on the server, with the tiles numbered from 0 to Ms -1.
Ns – Number of vertical tiles on the server, with the tiles numbered from 0 to Ns -1
Mc – Number of horizontal tiles on the client, with the tiles numbered frm 0 to Mc -1
Nc – Number of vertical tiles on the client, with the tiles numbered from 0 to Nc -1.
Thus, the horizontal scale factor, hsf = (Ms * Xs) / (Mc * Xc)


Vertical scale factor, vsf = (Ns * Ys) / (Nc * Yc)

Then the remaining scaling parameters can be calculated according to the following equations:
· Number of horizontal client montages 
=
αi for i = 0,

= 
αi - αi-1 + 1, for i = 1 to (Mc – 1)






where αi = (Mc/Ms) * i, for i = 0 to (Mc – 1)
· Similarly, number of vertical client montages =
αi for i = 0,

= 
αi - αi-1 + 1, for i = 1 to (Nc – 1)







where αi = (Nc/Ns) * i, for i = 0 to (Nc – 1)

Now for every client montage that exists, there is a corresponding server montage. In order to be able to retrieve and show the server montage, the clients need to know the following parameters,


Oxs – horizontal offset in a server tile

Oys – vertical offset in a server tile 

mxs – montage width on the server side

mys – montage height on the server side

Knowing the number of client montages, we traverse from left to right and top to bottom pixel by pixel for all the server tiles. And every time we encounter either a server tile boundary or (the corresponding) client tile boundary, we note the offsets Oxs and Oys in that server tile and the width ( mxs ) and height ( mys ) of the server montage.
Therefore 

· Client’s server side montage pixel width = hsf * mxs
· Client’s server side montage pixel height = vsf * mys
Knowing the number of montages, the scaling factors, server side offsets and montage dimensions, the clients can calculate the client side offsets of each montage too. Each client is then able to connect to one or more servers and request a part (or whole) of the video stream based on these parameters. 
4.2 Video data over UDP


When video data is sent over UDP, even if one packet is lost, the receiver just accepts the next incoming packet and tries to arrange it next to the previously received packet. The resultant image gets warped as there is no indication of whether packets were lost and how many of them were lost. Thus care has to taken while sending video data over UDP to recover from data loss, out of order packets or integrity failure. The UDP class in TeraVision implements a protocol over UDP packets to take care of these anomalies of an unreliable channel. Figure 24 shows the structure of the header and payload used for the protocol.


[image: image24]
Figure 24. Header and payload fields of a TeraVision UDP packet. 

Each UDP packet is stamped with a header which has fields carrying the following information:

· The video frame id of which the UDP packet is a part of. Every TeraVision frame has a unique identifier which allows the clients and servers to synchronize their display or capture respectively. This identifier helps the receiver place the packet in the correct video buffer on the client end.

· The packet id: All the packets for a video frame are numbered from 0 to a maximum value,. The maximum value depends on the size of the video frame and UDP packet and is given by the relation.

Nmax = V / (U - h),

Where,

V – The size of the video frame


U – Size of the UDP packet use


h – Size of the header for TeraVision’s protocol. (Currently 8 bytes)

This identifier helps the receiver to calculate the correct offset in which the payload of the packet should be placed, even if pre-ceding packet were lost or will arrive later (out-of-order).

Figure 24 shows the different fields of the UDP packet. The implementation uses scatter-gather calls to handle the header-payload structures efficiently. The receiver actually runs as a thread and tries to empty the socket buffers as quickly as possible, in order to minimize overflow.
4.3 Remote process execution and control

Since the TeraVision processes have to be spawned over several machines, we need a mechanism to do so. For this purpose, the tvRemExec utility was written. The utility can be run in a daemon mode on all participating nodes. The TeraVision master can then send commands to the daemons to spawn the TeraVision slave processes on all the slave nodes. The utility maintains a list of all spawned child processes and is used for controlling and safely shutting down the processes whenever needed.

The current implementation of the tvRemExec is over simple TCP sockets and is a potential security hazard. The future versions will have a secure channel for operation. 
4.4 Frame Decimation policy


The graphics and networking subsystems run at speeds decided by many factors from hardware limitation to load on the resources. Thus it would be a bad thing to assume that the network is as fast as the graphics and vice-versa. There is a need for a frame-decimation policy which helps in deciding which frames are to be dropped, when all components of the system cannot run at the same speed.
4.4.1 Server side decimation:


The network tries to transmit the video frames at the best possible speeds. But if the video source is feeding frames faster than the network can handle, frames have to be dropped. The server looks only for the latest frames in the video buffers for transmission. This way the decimation is indirectly decided by the network speed.
4.4.2 Client side decimation:


The client uses the same policy as the server and the display threads look for the latest frames in the buffers. So if the network was faster than the display, the display speed decides what frames are dropped from the buffer.
5. Tests and OBSERVATIONS
This section provides results from tests conducted with the TeraVision prototype systems over LANs and WANs. The test frames transmitted in all the cases are video frames with a resolution of 1024x768 at 24 bits per pixel, unless specified otherwise. All tests were done with uncompressed video streams. Since the system has been implemented for Linux and Windows and can run on many machines at the same time, there are several possible test combinations. In this section we shall consider the test results most pertinent to the thesis.

5.1 Test machines’ specifications


All machines were equipped with gigabit Ethernet adapters and a 100 BaseT interface. The video data was sent over the gigabit interfaces and the synchronization messages are passed over the Fast Ethernet interface. No changes were made at the kernel or driver level to optimize performance.
5.1.1 Linux machines 

· Hardware specifications: Dual Intel Xeon CPUs at 1.8 GHz, 512 MB RAM.

· Software specification:  Red Hat 7.3
· Video Source: Emulated in software.

5.1.2 Windows machines

· Hardware specifications: Intel Xeon at 1.5 GHz, 512 MB RAM
· Software specifications: Windows 2000
· Video Source: Foresight Imaging’s I-RGB-200 video-capture cards.
5.2 Network specifications
5.2.1 LAN
The LAN tests were done over Linux and Windows machines connected over a gigabit switch. The NICs (Network Interface cards) used have optical fiber interfaces and are capable of providing a maximum throughput of 1Gbps.
5.2.2 WAN
The main tests for LFNs were conducted between SARA [15] and EVL [16] over the Starlight network [14]. In all cases the maximum throughput of the network was 1 Gbps and the MTU size was set to 1500 bytes. Some results from tests run between GRNET (Greek Research and Technology Network), Greece and EVL are also presented.

5.3 Tests

The following tables, TABLE II and TABLE III show the performance of the system with TCP and UDP over LAN and WAN. The tests were done between one sending and one receiving machine. As a general observation, we notice that Linux machines have higher sending and receiving throughput capabilities.
5.3.1 Performance over TCP and UDP
The UDP bandwidths indicated in the tables are the maximum sustained throughputs which were observed without getting any packet losses. In the event of packet losses, it was seen that the network interfaces never lost any packets. Buffer overflows at the sending or receiving side were always responsible for the loss.
TABLE II
SYSTEM PERFORMANCE WITH TCP

	Tests
	Bandwidth used (Mbps)
	Effective
Frame Rate (Frames / sec)
	Server CPU utilization
	Client CPU utilization
	Test network

	LAN (Linux to Linux)
	703.12
	37.4
	65.4 %
	98 %
	Local area 1 Gbps

	LAN (Windows to Linux)
	534
	28.4
	60 %
	64 %
	Local area 1 Gbps

	WAN (Linux to Linux)
	110
	5.8
	15 %
	9 %
	Starlight (1 Gbps)

	WAN (Windows to Linux)
	110
	5.8
	54 %
	10 %
	GRNET to EVL (1 Gbps)


TABLE II

SYSTEM PERFORMANCE WITH UDP

	Tests
	Bandwidth used (Mbps)
	Effective
Frame Rate

(Frames / sec)
	Server CPU utilization
	Client CPU utilization
	Test network

	LAN (Linux to Linux)
	930.6
	49.5
	64 %
	94 %
	Local area 1 Gbps

	LAN (Windows to Linux)
	180
	9.6
	80 %
	17 %
	Local area 1 Gbps

	WAN (Linux to Linux)
	285
	15.2
	26 %
	27 %
	Starlight (1 Gbps)

	WAN (Windows to Linux)
	190
	10.1
	60 %
	100%
	GRNET to EVL (1 Gbps)


As multiple VBoxes are stacked on the server or client side to handle complex displays, they have to synchronize with each other to send and receive video streams. The following tables, TABLE IV and TABLE V show the affect on system performance due to the overheads involved with scalability and synchronization. The data is sent over TCP to observe the affect of congestion on bandwidth.
5.3.2 Effect of Synchronization and Scalability


TABLE IV shows results from a test, where one Windows server is used and the number of Linux clients are varied to see the affect on performance. We observe from the table, that as the number of clients increase, the total sending bandwidth decreases gradually and the CPU utilization on the serve side increases. However since with increase in the number of clients, the video data received by each client decreases, the CPU utilization on the clients goes down.

TABLE IV
EFFECT OF SYNCHRONIZATION AND SCALABILITY ON CLIENTS
	Tests
	Bandwidth used (in Mbps)
	Effective
Frame Rate (Frames / sec)
	Server CPU utilization
	Per Client CPU utilization
	Test network

	with 1 client
	534
	28.4
	60 %
	64 %
	Local area, 1 Gbps

	With 4 clients
	530
	28
	95 %
	17 %
	Local area, 1 Gbps

	With 9 clients
	503.84
	26.8
	97 %
	7.5 %
	Local area, 1 Gbps

	With 15 clients
	488.8
	26
	98 %
	4 %
	Local area, 1 Gbps


In TABLE V, one Linux client is used for displaying the streams sent by many Linux servers. As we increase the number of servers, the amount of data being received by the client increases. This causes a bottleneck causing TCP’s congestion mechanism to reduce the sending rate [Reference – TCP]. We notice that the client side CPU soon becomes a problem. Also since there is no decimation of video data, the client attempts to show the video streams in its entirety. This becomes a serious problem for the display hardware on the machines which are designed to handle smaller display resolutions. 
TABLE V
EFFECT OF SYNCHRONIZATION AND SCALABILITY ON SERVERS
	Tests
	Bandwidth used (in Mbps)
	Effective
Frame Rate (Frames / sec)
	Server CPU utilization
	Per Client CPU utilization
	Test network

	with 1 server
	623
	33
	70 %
	80 %
	Local area, 1 Gbps

	With 4 servers
	180
	9.5
	17 %
	94 %
	Local area, 1 Gbps

	With 9 servers
	120
	6.3
	15 %
	99 %
	Local area, 1 Gbps


5.3.3 Effect of different frame sizes

The video frame sizes and frame rate determines the amount of data that has to be streamed. In the following tests, shown in TABLE VI and TABLE VII, we vary the frame sizes but do not control the frame rate. The system attempts to send the frames at the best possible rate. The tests shown here were done over TCP and UDP on LAN between one sending (Windows) machine and one receiving (Linux) machine.  We notice that in both the cases, the bandwidth and CPU utilization remains and the only thing that varies is the frame rate.
TABLE VI
EFFECT OF FRAME SIZES OVER TCP
	Video frame sizes
(at 24 bpp)
	Bandwidth used (in Mbps)
	Effective
Frame Rate (Frames / sec)
	Server CPU utilization
	Per Client CPU utilization
	Test network

	800 x 600
	489
	42.45
	52 %
	55%
	Local area, 1 Gbps

	1024 x 768
	534
	28.4
	60 %
	60 %
	Local area, 1 Gbps

	1200 x 1024
	473
	13.6
	60 %
	60 %
	Local area, 1 Gbps

	1600 x 1200
	468
	10.13
	60 %
	60 %
	Local area, 1 Gbps


TABLE VII
EFFECT OF FRAME SIZES OVER UDP
	Video frame sizes

(at 24 bpp)
	Bandwidth used (in Mbps)
	Effective
Frame Rate (Frames / sec)
	Server CPU utilization
	Per Client CPU utilization
	Test network

	800 x 600
	176
	15.2
	78 %
	34 %
	Local area, 1 Gbps

	1024 x 768
	180
	9.6
	80 %
	34 %
	Local area, 1 Gbps

	1200 x 1024
	184
	5.4
	80 %
	34 %
	Local area, 1 Gbps

	1600 x 1200
	181
	3.92
	80 %
	34 %
	Local area, 1 Gbps


5.3.4 Effect of UDP datagram sizes
As discussed in section 4.2, care has to be taken while sending video data over UDP. We assume that since a UDP datagram would be sent on Ethernet packets, we try to send the video data structures which can fit on Ethernet packets. This way, even if packets are lost, we can recover from the losses.
During the course of developing the prototype, it was observed that the standard 1500 byte datagram size was a bad assumption for performance of UDP streams on Windows. The datagram size did not make any difference for Linux. In all the previous tests, the datagram size for UDP tests was assumed to be 1500 bytes, since the Ethernet packets handling the data are set to 1500 byte MTUs on the network. The following TABLE VIII shows the affect on the sending throughput on Windows with variation in datagram sizes.
We notice that as we increase the datagram sizes, the sending throughput increases and the server CPU utilization goes down. However the client’s CPU utilization goes up, as an affect of increase in bandwidth.
TABLE VIII
EFFECT OF UDP DATAGRAM SIZES ON WINDOWS
	Datagram sizes (in bytes)
	Bandwidth used (in Mbps)
	Effective
Frame Rate (Frames / sec)
	Server CPU utilization
	Client CPU utilization
	Test network

	1450
	180
	9.6
	80 %
	34 %
	Local area, 1 Gbps

	8192
	392
	20.8
	65 %
	55 %
	Local area, 1 Gbps

	16384
	498
	26.5
	70 %
	63 %
	Local area, 1 Gbps

	32768
	586
	31
	60 %
	80 %
	Local area, 1 Gbps


5.4 System Demonstrations


The system has been tested and demonstrated at conferences and public exhibitions to adjudge the response of the scientific community towards it. Over the period of the prototype development, the system was demonstrated at the following places:

· iGrid 2002, Sept 2002, Amsterdam [17]

· Workshop "Towards integrated Networking and Grids infrastructures for eScience and beyond - The EU e-Infrastructures initiative”, June 2003 [18]

· All Hands Meeting, May 2003, University of Illinois at Urbana-Champaign
· OptIPuter[19] Site Visit, Sept 2003.
· Furthermore TeraVision boxes have been installed at ANL and at NCSA for further system and user testing.
6. CONCLUSIONS AND future work

6.1 Contributions

The main contributions of this thesis can be listed as follows. It can also be considered as the listing of the capabilities of the system:
· High-Resolution video can be streamed over LFNs without loading the rendering machines. And the users do not need to have an in-depth understanding of the networking concepts to be able to do so.

· The thesis proposes a unique way of distributing the load of video streaming across machines by using the output of the graphics hardware.

· Streaming of complex display systems such as stereoscopic or tiled-displays, which require a high degree of synchronization for their working, is now possible.
· The source video streams automatically scale to fit the destination’s display. The sending machines distribute the video streams to the display machine(s) to utilize the available display resolution completely.
· The system provides a framework which can be used to adapt it to a variety of different collaborative environments and scientific visualization applications.
· The streaming system is oblivious to the platform used for generating the visualizations and can stream from virtually any graphics system with a video output.
6.2 Future work
6.2.1 Multicasting tiled displays

As explained in section 3.3.1.8 the system currently is capable of multicasting single video streams to single displays only. The problem of multicasting to and from tiled-displays is definitely solvable but requires more work at the control-plane level interaction between the TeraVision processes.

The problem can be solved easily by making the assumption that each client site has the same display configuration. By giving a unique multicast address to every server montage that is transmitted, the server tile(s) can be multicast to the clients. However since till run-time, it is not known how many server montages are present, the TeraVision processes need to generate the multicast addresses to be used, from a list of possible addresses.
6.2.2 Optical multicast

With advancement in MEMS (Micro-Electro-Mechanical Systems) it has been possible to construct pure photonic switches, which use micro-mirrors for routing light from one port to the other. These electro-mechanical systems are not suitable for routing network traffic in real-time but are very useful for setting up dedicated light paths between machines across the LAN or across the globe. With optical fiber technology getting cheaper everyday, it is now possible to have dedicated network pipes between computing machines. 

As a consequence, optical splitters have enabled a unique way of providing multicast for network traffic, by splitting a light beam (carrying network traffic) into many similar beams. This is a very attractive approach as no electronics is involved it doing the network packet replication and thus eliminates the problem of loads on routers and switches. But ss of today, the technology is still in its nascent stages and more work needs to be done before optical network can be used with the conventional IP/Ethernet based protocols.
6.2.3 Incorporate RBUDP
Since typical scientific visualizations cannot tolerate any type of artifacts in the resultant video, UDP may not provide the ideal solution in many cases because of the possibility of packet-losses. We need a reliable transport layer, which can provide the performance of UDP but with the reliability of TCP. EVL has been working on such a streaming protocol called the RBUDP [1]. RBUDP uses a scheme of selective acknowledgments, where the sender sends a burst of UDP packets and the receiver acknowledges only the packets which are not received. The sender then re-transmits the missing packets. RBUDP has shown excellent results for LFNs and the bandwidth numbers are close to that from UDP streams. Thus future versions of TeraVision should provide a network protocol plug-in for RBUDP.
6.2.4 Integration with the Access Grid

The AccessGrid [3][6] is a very popular environment for remote collaboration that has been accepted by various universities and government organizations across the country. It is a virtual space which employs various display technologies and is frequently used by scientists to discuss and present their ideas. Thus it provides the perfect setup for utilizing the capabilities of a system such as TeraVision. The AccessGrid, currently provides a framework for incorporating new services and systems into its existing setup.
6.2.5 Real-time guarantees from the OS

One of the most difficult problems that had to be solved during the course of prototyping TeraVision, was the development of the sync module. Since the sync module works over TCP/IP sockets, the latency of the sync messages are decided by factors such as system load. If the server or client systems have heavily loaded resources, the synchronization suffers and the resulting video montages are not timed correctly. There is a need to provide a real-time guarantee from the OS to ensure an upper-bound on the time taken for the sync messages to be sent across machines.
6.2.6 Collapsing large displays to small

In the current implementation, if a large display is being streamed to a smaller display, there is no decimation done at the pixel level to reduce the data appropriately. Since the client display has less resolution than the source video streams, it is inefficient to stream more data than can be viewed. Moreover, in cases where say an entire 15-tile display is being sent to a laptop, 15 serving machines will attempt to send their video streams towards one client. This would obviously create a bottleneck on the client’s network interface and may cause many undesirable effects such as congestion and packet-losses. The client typically also might not be able to handle the load of so many full-resolution video streams simultaneously. Thus there is a need to decimate the data at the source before transmission in such cases. 
6.2.7 Compression over unreliable protocols

As discussed in section 3.3.1.5 special care has to taken when sending compressed data over unreliable channels. The current implementation provides a RLE (Run Length Encoding) compression module which will work only on reliable transport protocols such as TCP but fail over UDP and Multicast.
6.2.8 Secure channel for control plane

The current implementation of the control plane is done over un-encrypted TCP sockets, which can prove to be a potential security hazard. Since these channels are present in all TeraVision processes, they need to be secured to prevent misuse of the TeraVision boxes. The video data is also sent over open sockets right now but the users have the option of plugging-in their own secure protocols to take care of it.
6.2.9 Port-mapping and restricting port range

During user testing, it was realized that many research labs want to run TeraVision servers from behind fire-walls. This means that there has to be a known range of network ports that are used on the VBoxes and it should preferably be as small as possible. In the current implementation, the main port values are hard-coded and the many modules use ports as assigned by the operating system defaults. 
6.3 Concluding remarks

The system proposed and prototyped during the course of this thesis provides a flexible and scalable solution for the display pushing problem in collaborative environments and scientific visualization applications. Now users can stream the output of complex visualization systems over LFNs without making any modifications to the source machines. The system scales the visualization, generated by the source machines, automatically to the client’s display. The solution also distributes the load for streaming the high-resolution video streams to dedicated machines, leaving the rendering machines free for computation and rendering. This is a very important feature for computationally heavy visualization applications.

The system attempts to provide a framework which allows easy adaptation to many visualization scenarios and it is hoped that it will prove to be a useful tool for collaborative environments and the scientific community.
CITED LITERATURE
1. E. He, J. Leigh, O. Yu , T. A. DeFanti, Reliable Blast UDP: Predictable High Performance Bulk Data Transfer, IEEE Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

2. E. He, J. Alimohideen, N. K. Krishnaprasad, J. Leigh, O. Yu, T. A. DeFanti, L. Smarr, QUANTA: A Toolkit for High Performance Networking Applications.


3. J. Leigh, G. Dawe, J. Talandis, E. He, S. Venkataraman, J. Ge, D. Sandin, T. A. DeFanti, AGAVE: Access Grid Augmented Virtual Environment, Proc. AccessGrid Retreat, Argonne, llinois, Jan, 2001.

4. W. R. Stevens, “Unix Networking Programming, Volume 1, Second Edition: Networking APIs: Sockets and XTI,” Addison Wesley, 1998, pp.357.

5. http://www.evl.uic.edu/cavern/continuum
6. http://www.accessgrid.org
7. John Nagle. Rfc896: Congestion control in ip/tcp internetworks. Technical report, Internet Assigned Numbers Authority, Jon Postel, USC/ISI, 4676 Admiralty Way, Marina del Rey, DA 90292, 1984. 
http://info.internet.isi.edu/in-notes/rfc/files/rfc896.txt

8. http://www.realvnc.com
9.  http://graphics.cs.ucdavis.edu/~staadt/download/Staadt_EGVE03.pdf
10. http://www.icwall.nl/lucspapers/ipt2002.pdf
11. http://chromium.sourceforge.net/doc/index.html
12. http://www.cs.virginia.edu/~gfx/pubs/cr/cr_lowquality.pdf
13. http://www.cs.virginia.edu/~gfx/pubs/CRopenRM/CRopenRM.pdf
14 http://www.startap.net
15 http//www.sara.nl

16 http://www.evl.uic.edu
17 http://www.igrid.org
18  http://www.cordis.lu/greece/events120603.htm
19 J. Leigh, Renambot, L., DeFanti, T., Brown, M., He, E, Krishnaprasad, N., Meerasa, J., Nayak, A., Park, K., Singh, R., Venkataraman, S., Zhang, C., Livingston, D., McLaughlin, M., An Experimental OptIPuter Architecture for Data-Intensive Collaborative Visualization, 3rd Workshop on Advanced Collaborative Environments (in conjunction with the High Performance Distributed Computing Conference), Seattle, WA 06/22/2003 - 06/22/2003
VITA

	NAME
	Rajvikram Singh

	EDUCATION
	B.E. Electronics Engineering, University of Mumbai, Mumbai, India, 1998

M.S., Computer Science, University of Illinois at Chicago, Chicago, Illinois, 2003.

	WORK EXPERIENCE
	Research Assistant, Electronic Visualization Laboratory, University of Illinois at Chicago, Chicago, Illinois, Aug 2000 - present.

Software Systems Engineer, Tata Infotech Ltd., Mumbai, India, Aug 1998 – July 2000.



	PUBLICATIONS
	Singh, R., Leigh, J., DeFanti, T., A., Karayannis, F., TeraVision: a high resolution graphics streaming device for amplified collaboration environments Future Generation Computer Systems 1008 (2003) 11/01/2002 - 12/24/2003


J. Leigh, Girado, J., Singh, R., Johnson, A., Park, K., DeFanti, T. A., TeraVision : a Platform and Software Independent Solution for Real Time Display Distribution in Advanced Collaborative Environments, Access Grid Retreat 2002 Proceedings, La Jolla, CA 03/04/2002 - 03/05/2002


J. Leigh, Renambot, L., DeFanti, T., Brown, M., He, E, Krishnaprasad, N., Meerasa, J., Nayak, A., Park, K., Singh, R., Venkataraman, S., Zhang, C., Livingston, D., McLaughlin, M., An Experimental OptIPuter Architecture for Data-Intensive Collaborative Visualization, 3rd Workshop on Advanced Collaborative Environments (in conjunction with the High Performance Distributed Computing Conference), Seattle, WA 06/22/2003 - 06/22/2003

J. Leigh, A. Johnson, K. Park, A. Nayak, R. Singh, V. Chowdhry, Amplified Collaboration Environments, VizGrid Symposium, Tokyo, November 2002.




SCRATCH SHEETS

Miscrelleneous thing … for discussion
· LFN (and latest developments)

· Requirements of protocols for LFNs … what are the options available

· TCP tuning (web100 etal. and auto tuning)
· Packet losses with UDP

· RBUDP et al.

ToDos

· Add class diagrams to chapter 3, video source modules, compression modules and network protocols module section
· Discuss RLE in detail

· Fix the equations in the MxN to XxY section. The equation for calculating the server side parameters for the client montages is incorrect.
[image: image1][image: image25.emf] 

[image: image26.png]


[image: image27.png]C:\>Teralision v2.8 console. Type ’help’ For a list of available commands
"Teralision’ is not recognized as an internal or external command,
operable progran or batch File.

[c:\>TERAUISTON>




[image: image28.bmp][image: image29.bmp][image: image30.bmp][image: image31.jpg]


[image: image32.png]Streaming mode

. =

TeraVision 2.T



[image: image33.bmp][image: image34.jpg]


[image: image35.png]000000

000000

1450

1230.0.0.10

0.0.00




[image: image36.png]


[image: image37.jpg]


[image: image38.png]Send Socket Buffer Size (bytes)

Receive Socket Buffer Size (bytes)




[image: image39.png]Send Socket Buffer Size (bytes)

Receive Socket Buffer Size (bytes)

UDP packet Size (bytes)




[image: image40.png]


[image: image41.jpg]



Projectors for passive stereo





Post Processing


Phase n





PC’s native display





Network protocol module





Peer TeraVision Clients





Sync Module








1 The control channel between the server and client only exists between the Master server and the Master client





Console based interface





GUI








Peer TeraVision Servers





TeraVision Client 1





Peer TeraVision Servers





Video devices emulated in software (eg. screen capture)





User Interface modules





Sync Module





Control Channel Module





Network protocol module





Compression module








Video source module





Video capture cards





Video cameras





Sync channel





Control channel





To gigabit network





Compression module








Peer TeraVision Clients





TeraVision Server 1





User Interface modules





Control Channel Module





Sync channel





Control channel





1 The control channel between the server and client only exists between the Master server and the Master client





Console based interface





GUI





From gigabit network





Video display module





System Core





Server IP and Port





Operating mode





Pause button





Stop button





Play button








UI messages are broadcasted to all the slave processes


























UI Clients





Socket based connection





Command console





GUI





FIFO containing UI messages





UI Server





TeraVision Master Process








System Core





Network protocol configuration





Video module configuration





Status box





System configuration





Floor Control Lock 1





Performance monitoring 1





1 Currently not implemented





System configuration screen





Module configuration screen





Master








Slave








Slave








Slave








Step 1: Master expects a TV_SYNC_SLAVE_UPDATE messages from all registered slaves.





Slave








Slave








Slave








Master








Step 2: Master broadcasts a TV_SYNC messages to all registered slaves.





TV_SYNC_SLAVE_UPDATE





TV_SYNC_SLAVE_UPDATE





TV_SYNC_SLAVE_UPDATE





TV_SYNC





TV_SYNC





TV_SYNC











1 The sync mechanism is a dedicated, low latency channel used for synchronizing the video capture on the server side and video displays on the client side.





Source tiled display








TeraVision Servers





Multicast capable


Network








TeraVision Clients








TeraVision Clients








TeraVision Client





TeraVision Client








Network








VGA/DVI outputs





TeraVision servers





Computers rendering the graphics








Client





TeraVision Server





Gigabit


Network





Video over VGA/DVI





TeraVision Client





Video Source





Video output to display device








 Fig 1.2: The Continuum- an Amplified Collaboration Environment at EVL.





TeraVision Client


�

















Post Processing


Phase 1





Post Processing


Phase 2





Rendering source








TeraVision Server





Multicast capable


Network














Tiled display driven by TeraVision clients





Tiled display driven by TeraVision clients





Slave





Slave





Slave





Master





TeraVision Clients





Sync Channel





Control Channel








Slave





Slave





Slave





Master





TeraVision Servers











Network














Network





Tiled display driven by TeraVision clients





Tiled display driven by TeraVision clients





VGA/DVI outputs








Network








TeraVision servers





Computers rendering the graphics





TeraVision Client





Right eye video





TeraVision Clients





Left eye video

















TeraVision Clients





Right eye video





Left eye video








Network





Right eye video





Stereo video source





Left eye video





Sync Mechanism 1





TeraVision Servers





VBox





VBox





Note: The figure on the left shows a single tile server sending the video to a 2x2 client. In this case the server has to service 4 clients and each client connects to the same server. In the second case, the server is a 2x2 and a client is a 3x3 tiled display. If we consider the middle tile, we see that it has to actually receive 4 video streams from 4 different servers.





1 tile server





2x2 tiled client





2x2 tiled server





3x3 tiled client





Case A





Case B





1442 bytes





2 bytes





4 bytes





Video Frame id








Header





Video data (payload)





Total number of UDP packets for this video frame. 1





2 bytes





Packet ID





1 This field carries the length of the payload for the last UDP packet of a video frame. This is because the length of the last packet is variable. The default size of the entire packet is 1450 bytes.





Final output on a display





Storage





Computation





Rendering





Display



































































































































vi

[image: image42.wmf] 

[image: image43.jpg]digltalblasphemy;corﬁ



[image: image44.png]Plugin Selection

Video Input plugein

‘Compresson plugin

Network Protocol plugein

Window border
Invert colors




[image: image45.jpg]


